
Scientific Advisory Committees

Central Data Model
Advisory Alumni








Prof. Oliver Fiehn has pioneered developments and applications in metabolomics with over 220 publications to date, starting in 1998 as postdoctoral scholar and from 2000 onwards as group leader at the Max-Planck Institute for Molecular Plant Physiology in Potsdam, Germany. Since 2004 he is Professor at the UC Davis Genome Center, overseeing his research laboratory and the satellite core service laboratory in metabolomics research. Since 2012, he serves as Director of the NIH West Coast Metabolomics Center, supervising 35 staff operating 16 mass spectrometers and coordinating activities with three UC Davis satellite labs, including efforts for combined interpretation of genomics and metabolomics data. The West Coast Metabolomics Center provides the most extensive and most in-depth analysis of metabolites available today, using a range of validated protocols for fee-for-service projects and scientific collaborations.
Professor Fiehn’s research aims at understanding metabolism on a comprehensive level in human population cohorts, animal and plant models, and cells and microorganisms. In order to leverage data from these diverse sets of biological systems, his research laboratory focuses on standardizing metabolomic reports and establishing metabolomic databases and libraries, for example the MassBank of North America that hosts over 200,000 public metabolite mass spectra and BinBase, a resource of over 90,000 samples covering more than 1,900 studies. Professor Fiehn’s laboratory members develop and implement new approaches and technologies in analytical chemistry for covering the metabolome, from increasing peak capacity by ion mobility to compound identifications through cheminformatics workflows and software. He collaborates with a range of investigators for interpreting metabolomic data in human diseases through statistics, text mining and pathway-based mapping efforts. He also studies fundamental biochemical questions from metabolite damage repair to the new concept of epimetabolites, the chemical transformation of primary metabolites that gain regulatory functions in cells.
For his work, Professor Fiehn has received a range of awards including the 2014 Molecular & Cellular Proteomics Lecture Award and the 2014 Metabolomics Society Lifetime Achievement Award. He served on the Board of Directors of the Metabolomics Society from 2005-2010 and 2012-2015, organizing a range of workshops and conferences, including the 2011 Asilomar metabolomics meeting and the 2015 Metabolomics Society international conference in San Francisco that reached a record of over 1,000 participants.

My vision is to fundamentally alter the fabric of biomedical science, utilizing my art as a data translator to weave together healthcare systems, basic science research, and patients; through development of data integration technologies, innovative communication strategies, and collaborative education and outreach.
My demonstrated success in leadership of cross- disciplinary international teams, development of applications used for rare disease diagnostics, implementation of platforms and tools for translational research, and open and reproducible science will serve me and the community at large to effect real change.

Dr. Long’s research bioengineers the photosynthesis process in crops to achieve higher productivity, sustainability, and adaptation to climate change. He heads an international project to improve the crops that feed many of the poorest in the world, which has led to the discovery of a way to engineer photosynthesis that resulted in a 20% increase in crop productivity.

Dr. McCue’s early research focused on the development and application of comparative genomics methods for studies of transcription regulation in bacteria. Her research pioneered the phylogenetic footprinting approach for predicting transcription factor binding sites de novo using multiple bacterial genomes, and contributed to a number of algorithmic advances to the Gibbs sampling technique for multiple sequence alignment. Her research at PNNL has expanded to include the analysis of microbial populations and metagenomes for microbial ecology studies, and the application of high performance computing techniques to handle the quantity of data being generated by current sequencing technologies.

Nirav Merchant is the Co-PI for NSF CyVerse(link is external) a national scale Cyberinfrastructure for life sciences and (link is external)NSF Jetstream(link is external) the first user-friendly, scalable cloud environment for NSF XSEDE.
He received his undergraduate degree in Industrial engineering from the University of Pune, India, and graduate degree in Systems and Industrial Engineering from the University of Arizona (1994).
Over the last two decades his research has been directed towards developing scalable computational platforms for supporting open science and open innovation, with emphasis on improving research productivity for geographically distributed interdisciplinary teams.
His interests include data science literacy, large-scale data management platforms, data delivery technologies, managed sensor and mobile platforms for health interventions, workforce development, and project based learning.

Julie Mitchell is Director of the Biosciences Division at Oak Ridge National Laboratory. She has over 20 years of experience in working at the interface of quantitative and biological sciences. Mitchell’s research has focused on projects at the interface of biochemistry, data science, and high-performance computing. Her contributions to the field of computational biophysics emphasize the use of machine learning in predictive models for molecular interactions. Mitchell’s group has produced a widely utilized web server for protein-protein interaction hot spots (>80k jobs), many well-cited publications and two patents. She collaborates on ORNL projects related to protein intrinsic disorder, small molecule screening algorithms, and vaccine design.
Prior to joining ORNL, Mitchell worked as a professor of mathematics and biochemistry at the University of Wisconsin and as a principal scientist at the San Diego Supercomputer Center at UCSD. Mitchell earned a Ph.D. in mathematics at the University of California at Berkeley, and a B.A. in mathematics at San Jose State University. Mitchell was a Sloan Foundation Fellow, La Jolla Interfaces in Science Fellow and ARCS Foundation Fellow during her faculty, postdoctoral and graduate years, respectively.

We develop theoretical approaches and computational models for the study of complex biological networks. We are especially interested in the dynamics and evolution of metabolism, whose complex web of small-molecule transformations underlies fundamental aspects of biological organization, from energy transduction to cell-cell communication. In addition to helping understand how biological systems function and evolve, we seek to apply our methods to the design and optimization of engineered networks for bioenergy and biomedicine applications.

Rick Stevens is Argonne’s Associate Laboratory Director for Computing, Environment and Life Sciences.
Stevens has been at Argonne since 1982, and has served as director of the Mathematics and Computer Science Division and also as Acting Associate Laboratory Director for Physical, Biological and Computing Sciences. He is currently leader of Argonne’s Exascale Computing Initiative, and a Professor of Computer Science at the University of Chicago Physical Sciences Collegiate Division. From 2000–2004, Stevens served as Director of the National Science Foundation’s TeraGrid Project and from 1997–2001 as Chief Architect for the National Computational Science Alliance.
Stevens is interested in the development of innovative tools and techniques that enable computational scientists to solve important large-scale problems effectively on advanced scientific computers. Specifically, his research focuses on three principal areas: advanced collaboration and visualization environments, high-performance computer architectures (including Grids) and computational problems in the life sciences. In addition to his research work, Stevens teaches courses on computer architecture, collaboration technology, virtual reality, parallel computing and computational science.

Dr. Tringe joined the JGI in 2003 as a postdoctoral fellow in Eddy Rubin’s group. During her postdoctoral tenure she developed methods for comparative analysis of metagenome data from complex microbial communities. In 2006 she took a research scientist position providing scientific support for the developing portfolio of collaborator metagenome projects, and in 2010 she became head of the Metagenome Program. Dr. Tringe also heads the Microbial Systems Group, whose work focuses on sequence-based approaches to studying microbial community assembly, function and dynamics. Major foci of these research efforts are the roles of microbial communities in wetland carbon cycling and the interactions of plants with their associated microbiomes. Dr. Tringe serves as the Division Director of Environmental Genomics & Systems Biology at Berkeley Lab.

The Wrighton laboratory is a microbiome research group interested in the study of microorganisms, their genomes, and the surrounding environment. We investigate how microorganisms contribute to ecosystem processes, with a particular interest in carbon and nitrogen cycling. Our microbial research has many applications, including improving predictions of greenhouse gas emission from soils, stabilizing gastrointestinal and heart health, and enhancing energy yield and longevity from hydrocarbon systems. We integrate data from different scales, from the metabolite through genes/enzymes, to organisms, and ultimately microbial communities, to better understand microbial interactions with the biotic and abiotic environment. Please check out our laboratory webpage for more detailed information on our current research.